

ACMG GENE LIST FOR SECONDARY/UNRELATED FINDINGS

As of March 2013 (V1.0) (updated 2016 (V2.0), 2021 (V3.0), and 2022 (V3.1)) the American College of Medical Genetics and Genomics (ACMG) specifically recommends minimum evaluation, in the context of exome/genome sequencing, for the following list of 78 specific genes for 38 diseases/disorders in which findings would have actionable medical benefit for the patients and families of patients. These genes include some cancer or tumor syndromes, some connective tissue diseases, cardiomyopathies, and arrhythmias. Some of these conditions have onset in adulthood and an individual may not have recognizable features now. These disorders were selected because there may be changes in medical management for an individual if the individual is known to have a genetic susceptibility to oneor more of these disorders. Details regarding individual genes on this list will be provided to you upon request.

Hereditary breast and ovarian cancer	BRCA1, BRCA2, PALB2
Li-Fraumeni syndrome	TP53
Familial adenomatous polyposis	APC
Peutz-Jeghers syndrome	STK11
Lynch syndrome	MLH1, MSH2, MSH6, PMS2
MUTYH-associated polyposis	MUTYH (2 variants)
Juvenile polyposis syndrome	BMPR1A, SMAD4
von Hippel-Lindau syndrome	VHL
Multiple endocrine neoplasia type 1	MEN1
Multiple endocrine neoplasia type 2	RET
PTEN hamartoma tumor syndrome	PTEN
Retinoblastoma	RB1
Hereditary paraganglioma-	SDHD, SDHAF2, SDHC, SDHB, MAX,
pheochromocytomasyndrome	TMEM127
Tuberous sclerosis complex	TSC1, TSC2
WT1-related Wilms tumor	WT1
Neurofibromatosis type 2	NF2
Ehlers Danlos syndrome, vascular type	COL3A1
Familial thoracic aortic aneurysm	ACTA2, MYH11
Marfan syndrome	FBN1
Loeys-Dietz syndrome	TGFBR1, TGFBR2, SMAD3

Approved For Period: 11/11/2022 - 3/14/2023

Dilated cardiomyopathy	TNNT2, LMNA, FLNC, TTN (only loss-of-function variants), BAG3, DES, RBM20, TNNC1
Hypertrophic cardiomyopathy	MYH7, MYBPC3, TNNI3, TPM1, MYL3, ACTC1, PRKAG2, MYL2
Catecholaminergic polymorphic ventricular tachycardia	RYR2, CASQ2 (2 variants), TRDN (2 variants)
Arrhythmogenic right ventricular cardiomyopathy	PKP2, DSP, DSC2, TMEM43, DSG2
Long QT syndrome	KCNQ1, KCNH2
Long QT syndrome; Brugada sydnrome; dilatedcardiomyopathy	SCN5A
Familial hypercholesterolemia	LDLR, APOB, PCSK9
Biotinidase deficiency	BTD (2 variants)
Fabry disease	GLA (all hemizygous, heterozygous homozygous)
Ornithine transcarbamylase deficiency	OTC (all hemizygous, heterozygous, homozygous)
Pompe disease	GAA (2 variants)
Hereditary hemochromatosis	HFE (p.Cys282Try homozygotes only)
Hereditary hemorrhagic telangiectasia	ACVRL1, ENG
RPE65-related retinopathy	RPE65 (2 variants)
Maturity-onset diabetes of the young	HNF1A
Wilson disease	ATP7B (2 variants)
Malignant hyperthermia susceptibility	RYR1, CACNA1S
Hereditary TTR amyloidosis	TTR

If a genetic change is identified in one of these genes, further testing for that specific gene maybe recommended. The absence of a reportable finding in these genes does not mean that an individual has no disease-causing changes in these genes, so future testing if the individual hassymptoms or features of one of the conditions caused by these genes should be considered.

Coverage of these genes through whole exome sequencing may not be as comprehensive as inpanels specifically designed to investigate them.